to: Index and Menu

Calculate Binomial probabilities

Expected: 0.05

Observed: 5

Sample Size: 10



Expected: 0.5 (=0.05*10)
Variance Exp= 0.475;
   sd= 0.6892

BINOMIAL PROBABILITIES
single; cumulative

p(=0): 0.598737; p(>0): 0.401263
p(=1): 0.315125; p(>1): 0.086138
p(=2): 0.074635; p(>2): 0.011504
p(=3): 0.010475; p(>3): 0.001028
p(=4): 0.000965; p(>4): 6.4E-5
p(=5): 6.1E-5; p(>5): 3.0E-6

(a=-0.052632,b=0.578947,0)

*** summary ***

Point probability= 6.1E-5
p(Obs>=5): 0.0001; (<5): 0.9999
p(Obs>5): 0; (<=5): 1
Mid-p: 0; 1-p: 1; 2*p: 0

Two sided probabilities
(sum of small p's):

abs(Exp-Obs)=abs(0.5-5)=4.5
Pointpr(Exp-Obs=4.5): 6.1E-5
p(Exp-Obs>=4.5)= 6.0E-5
p(Exp-Obs>4.5)= -0
Mid-p= 3.0E-5
For help go to SISA.

More:

Calculate CI
around obs= 5

T-test the difference
Exp-Obs=0.5-5=5.

Calculate the minimum
Sample Size
required to see if
the difference=5 is
statistically significant

Study the probability of N=10
given exp=0.5 and obs=5